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Abstract

There is a very rich literature proposing Bayesian approaches for clustering starting with a prior 

probability distribution on partitions. Most approaches assume exchangeability, leading to simple 

representations in terms of Exchangeable Partition Probability Functions (EPPF). Gibbs-type 

priors encompass a broad class of such cases, including Dirichlet and Pitman-Yor processes. 

Even though there have been some proposals to relax the exchangeability assumption, allowing 

covariate-dependence and partial exchangeability, limited consideration has been given on how 

to include concrete prior knowledge on the partition. For example, we are motivated by an 

epidemiological application, in which we wish to cluster birth defects into groups and we have 

prior knowledge of an initial clustering provided by experts. As a general approach for including 

such prior knowledge, we propose a Centered Partition (CP) process that modifies the EPPF to 

favor partitions close to an initial one. Some properties of the CP prior are described, a general 

algorithm for posterior computation is developed, and we illustrate the methodology through 

simulation examples and an application to the motivating epidemiology study of birth defects.
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1. Introduction

Clustering is one of the canonical data analysis goals in statistics. There are two main 

strategies that have been used for clustering; namely, distance and model-based clustering. 

Distance-based methods leverage upon a distance metric between data points, and do not 

sally.paganin@berkeley.edu . 

Supplementary Material
Supplementary material for Centered Partition Processes: Informative Priors for Clustering (DOI: 10.1214/20-BA1197SUPP; .pdf).

HHS Public Access
Author manuscript
Bayesian Anal. Author manuscript; available in PMC 2022 August 10.

Published in final edited form as:
Bayesian Anal. 2021 March ; 16(1): 301–370. doi:10.1214/20-BA1197.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in general require a generative probability model of the data. Model-based methods rely on 

discrete mixture models, which model the data in different clusters as arising from kernels 

having different parameter values. The majority of the model-based literature uses maximum 

likelihood estimation, commonly relying on the EM algorithm. Bayesian approaches that 

aim to approximate a full posterior distribution on the clusters have advantages in terms of 

uncertainty quantification, while also having the ability to incorporate prior information.

Although this article is motivated by providing a broad new class of methods for improving 

clustering performance in practice, we were initially motivated by a particular application 

involving birth defects epidemiology. In this context, there are N = 26 different birth defects, 

which we can index using i ∈ 1, …, N , and for each defect i there is an highly variable 

number of observations. We are interested in clustering these birth defects into mechanistic 

groups, which may be useful, for example, in that birth defects in the same group may 

have similar coefficients in logistic regression analysis relating different exposures to risk 

of developing the defect. Investigators have provided us with an initial partition c0 of 

the defects {1,…,N } into groups. It is appealing to combine this prior knowledge with 

information in the data from a grouped logistic regression to produce a posterior distribution 

on clusters, which characterizes uncertainty. The motivating question of this article is how to 

do this, with the resulting method ideally having broader impact to other types of centering 
of priors for clustering; for example, we may want to center the prior based on information 

on the number of clusters or cluster sizes.

With these goals in mind, we start by reviewing the relevant literature on clustering priors. 

Most of these methods assume exchangeability, which means that the prior probability 

of a partition c of {1,…,N } into clusters depends only on the number of clusters and 

the cluster sizes; the indices on the clusters play no role. Under the exchangeability 

assumption, one can define what is referred to in the literature as an Exchangeable Partition 

Probability Function (EPPF) (Pitman, 1995). This EPPF provides a prior distribution on the 

random partition c. One direction to obtain a specific form for the EPPF is to start with a 

nonparametric Bayesian discrete mixture model with a prior for the mixing measure P, and 

then marginalize over this prior to obtain an induced prior on partitions. Standard choices for 

P, such as the Dirichlet (Ferguson, 1973) and Pitman-Yor process (Pitman and Yor, 1997), 

lead to relatively simple analytic forms for the EPPF. There has been some recent literature 

studying extensions to broad classes of Gibbs-type processes (Gnedin and Pitman, 2006; De 

Blasi et al., 2015), mostly focused on improving flexibility while maintaining the ability to 

predict the number of new clusters in a future sample of data.

There is also a rich literature on relaxing exchangeability in various ways. Most of the 

emphasis has been on the case in which a vector of features xi is available for index 

i, motivating feature-dependent random partitions models. Building on the stick-breaking 

representation of the DP (Sethuraman, 1994), MacEachern (1999, 2000) proposed a class of 

fixed weight dependent DP (DDP) priors. Applications of this DDP framework have been 

employed in ANOVA modeling (De Iorio et al., 2004), spatial data analysis (Gelfand et al., 

2005), time series (Caron et al., 2006) and functional data analysis applications (Petrone et 

al., 2009; Scarpa and Dunson, 2009) among many others, with some theoretical properties 

highlighted in Barrientos et al. (2012).
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However such fixed weight DDPs lack flexibility in feature-dependent clustering, as 

noted in MacEachern (2000). This has motivated alternative formulations which allow the 

mixing weights to change with the features, with some examples including the order-based 

dependent Dirichlet process (Griffin and Steel, 2006), kernel- (Dunson and Park, 2008), and 

probit- (Rodriguez and Dunson, 2011) stick breaking processes.

Alternative approaches build on random partition models (RPMs), working directly with 

the probability distribution p(c) on the partition c of indices {1,…,N} into clusters. 

Particular attention has been given to the class of product partition models (PPMs) (Barry 

and Hartigan, 1992; Hartigan, 1990) where p(c) can be factorized into a product of 

cluster-dependent functions, known as cohesion functions. A common strategy modifies 

the cohesion function to allow feature-dependence; refer, for examples, to Park and Dunson 

(2010), Müller et al. (2011), Blei and Frazier (2011), Dahl et al. (2017) and Smith and 

Allenby (2019).

Our focus is fundamentally different. In particular, we do not have features xi on indices i 
but have access to an informed prior guess c0 for the partition c; other than this information 

it is plausible to rely on exchangeable priors. To address this problem, we propose a general 

strategy to modify a baseline EPPF to include centering on c0. In particular, our proposed 

Centered Partition (CP) process defines the partition prior as proportional to an EPPF 

multiplied by an exponential factor that depends on a distance function d(c, c0), measuring 

how far c is from c0. The proposed framework should be broadly useful in including extra 

information into EPPFs, which tend to face issues in lacking incorporation of real prior 

information from applications.

The paper is organized as follows. Section 2 introduces concepts and notation related 

to Bayesian nonparametric clustering. In Section 3 we illustrate the general CP process 

formulation and describe an approach to posterior computation relying on Markov chain 

Monte Carlo (MCMC). Section 4 proposes a general strategy for prior calibration building 

on a targeted Monte Carlo procedure. Simulation studies and application to the motivating 

birth defects epidemiology study are provided in Section 5, with technical details included in 

Paganin et al. (2020).

2. Clustering and Bayesian Models

This section introduces some concepts related to the representation of the clustering space 

from a combinatorial perspective, which will be useful to define the Centered Partition 

process, along with an introduction to Bayesian nonparametric clustering models.

2.1. Set Partitions

Let c be a generic clustering of indices [N ] = {1,…,N }. It can be either represented as 

a vector of indices {c1,…, cN}, with ci ∈ 1, …, K  for i = 1,…,N and ci = cj when i and j 

belong to the same cluster, or as a collection of disjoint subsets (blocks) {B1, B2,…, BK} 

where Bk contains all the indices of data points in the k-th cluster and K is the number 

of clusters in the sample of size N. From a mathematical perspective c = {B1,…, BK} 

is a combinatorial object known as set partition of [N ]. The collection of all possible 
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set partitions of [N ], denoted with ΠN, is known as the partition lattice. We refer to 

Stanley (1997) and Davey and Priestley (2002) for an introduction to lattice theory, and to 

Meilă (2007) and Wade and Ghahramani (2018) for a review of the concepts from a more 

statistical perspective.

According to Knuth in Wilson and Watkins (2013), set partitions seem to have been studied 

first in Japan around A.D. 1500, due to a popular game in the upper class society known as 

genji-ko; five unknown incense sticks were burned and players were asked to identify which 

of the scents were the same, and which were different. Soon diagrams were developed to 

model all the 52 outcomes, which corresponds to all the possible set partitions of N = 5 

elements. First results focused on enumerating the elements of the space. For example, for a 

fixed number of blocks K, the number of ways to assign N elements to K groups is described 

by the Stirling number of the second kind

SN, K = 1
K! j = 0

K
−1 j K

j K − j N,

while the Bell number ℬN = K = 1
N SN, K describes the number of all possible set 

partitions of N elements.

Interest progressively shifted towards characterizing the structure of the space of partitions 

using the notion of partial order. Consider ΠN endowed with the set containment relation 

≤, meaning that for c = {B1…, BK}, c′ = B1′ , …, B′K′  belonging to ΠN, c ≤ c′ if for all 

i = 1, …, K, Bi ⊆ Bj′ for some j ∈ 1, …, K′ . Then the space ΠN, ≤  is a partially ordered set 

(poset), which satisfies the following properties:

1. Reflexivity: for every c ∈ ΠN, c ≤ c,

2. Antisymmetry: if c ≤ c′ and c′ ≤ c then c = c′,

3. Transitivity: if c ≤ c′ and c′ ≤ c′′, then c ≤ c′′.

Moreover, for any c, c′ ∈ ΠN, it is said that c is covered (or refined) by c′ if c ≤ c′ and there 

is no c′′ such that c < c′′ < c′. Such a relation is indicated by c ≺ c′. This covering relation 

allows one to represent the space of partitions using a Hasse diagram, in which the elements 

of ΠN correspond to nodes in a graph and a line is drawn from c to c′ when c ≺ c′; there is 

a connection from a partition c to another one when the second can be obtained by splitting 

or merging one of the blocks in c. See Figure 1 for an example of the Hasse diagram of Π4. 

Conventionally, the partition with just one cluster is represented at the top of the diagram 

and denoted as 1, while the partition having every observation in its own cluster is at the 

bottom and indicated with 0.

This representation of the set partitions space ΠN as a partially ordered set provides a useful 

framework to characterize its elements. As already mentioned, two partitions connected in 

the Hasse diagram can be obtained from one another by means of a single operation of 

split or merge; a sequence of connections is a path, linking the two extreme partitions 0 and 
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1. A path starting from 0 connects partitions with an increasing rank, which is related to 

the number of blocks through r(c) = N – |c |. Set partitions with the same rank may differ 

in terms of their configuration Λ(c), the sequence of block cardinalities {| B1 |,…,|BK|}, 

which corresponds to another combinatorial object known as an integer partition of N. In 

combinatorics, an integer partition is defined as the multiset of positive integers {λ1 … 

λK}, listed in decreasing order by convention, such that i = 1
K λi = N. Also the associated 

space of all possible integer partitions IN is a partially ordered set, making the definition of 

configuration a poset mapping Λ ⋅ :c ∈ ΠN λ ∈ IN.

Finally, the space ΠN is a lattice, based on the fact that every pair of elements has a greatest 
lower bound (g.l.b.) and a least upper bound (l.u.b.) indicated with the “meet” ∧ and the 

“join” ∨ operators, i.e. c ∧ c′ = g.l.b.(c, c′) and c ∨ c′ = l.u.b.(c, c′) and equality holds 

under a permutation of the cluster labels. An element c ∈ ΠN is an upper bound for a subset 

S ⊆ ΠN if s ≤ c for all s∈S, and it is the least upper bound for a subset S ⊆ ΠN if c is 

an upper bound for S and c ≤ c′ for all upper bounds c′ of S. The lower bound and the 

greatest lower bound are defined similarly, and the definition applies also to the elements of 

the space IN. Consider, as an example, c = {1}{2, 3, 4} and c′ = {3}{1, 2, 4}; their greatest 

lower bound is c ∧ c′ = {1}{3}{2, 4} while the lowest upper bound is c ∨ c′ = {1, 2, 3, 4}. 

Considering the Hasse diagram in Figure 1 the g.l.b. and l.u.b. are the two partitions which 

reach both c and c′ through the shortest path, respectively from below and from above.

2.2. Bayesian Mixture Models

From a statistical perspective, set partitions are key elements in a Bayesian mixture model 

framework. The main underlying assumption is that observations y1,…, yN are independent 

conditional on the partition c, and their joint probability density can be expressed as

p y c,θ = Π
k = 1

K
Π

i ∈ Bk
p yi θk = Π

k = 1

K
p yk θk , (2.1)

with θ = (θ1,…, θK) a vector of unknown parameters indexing the distribution of 

observations yk = yi i ∈ Bk for each cluster k = 1,…,K. In a Bayesian formulation, a prior 

distribution is assigned to each possible partition c, leading to a posterior of the form

p c y,θ ∝ p c Π
k = 1

K
p yk θk . (2.2)

Hence the set partition c is conceived as a random object and elicitation of its prior 

distribution is a critical issue in Bayesian modeling.

The first distribution one may use, in the absence of prior information, is the uniform 

distribution, which gives the same probability to every partition with p c = 1/ℬN; however, 

even for small values of N the Bell number ℬN is very large, making computation of the 

posterior intractable even for simple choices of the likelihood. This motivated the definition 

of alternative prior distributions based on different concepts of uniformity, with the Jensen 
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and Liu (2008) prior favoring uniform placement of new observations in one of the existing 

clusters, and Casella et al. (2014) proposing a hierarchical uniform prior, which gives equal 

probability to set partitions having the same configuration.

Usual Bayesian nonparametric procedures build instead on discrete nonparametric priors, 

i.e. priors that have discrete realization almost surely. Dirichlet and Pitman-Yor processes 

are well known to have this property, as does the broader class of Gibbs-type priors. Any 

discrete random probability measure p can induce an exchangeable random partition. Due to 

the discreteness of the process, p induces a partition of the observations y1,…, yN which can 

be characterized via an Exchangeable Probability Partition Function. For both Dirichlet and 

Pitman-Yor processes, the EPPF is available in closed form as reported in Table 1 along with 

the case of the finite mixture model with κ components and a symmetric Dirichlet prior with 

parameters (γ/κ,…, γ/κ). Notice that λj = |Bj| is the cardinality of the clusters composing 

the partition, while notation (x)r is for the rising factorial x(x + 1) ··· (x + r − 1).

There is a strong connection with the exchangeable random partitions induced by Gibbs-type 

priors and product partition models. A product partition model assumes that the prior 

probability for the partition c has the following form

p c = B1, …, BK ∝ Π
j = 1

K
ρ Bj , (2.3)

with ρ(·) known as the cohesion function. The underlying assumption is that the prior 

distribution for the set partition c can be factorized as the product of functions that depend 

only on the blocks composing it. Such a definition, in conjunction with formulation (2.1) for 

the data likelihood, guarantees the property that the posterior distribution for c is still in the 

class of product partition models.

Distributions in Table 1 are all characterized by a cohesion function that depends on the 

blocks through their cardinality. Although the parameters can control the expected number 

of clusters, this assumption is too strict in many applied contexts in which prior information 

is available about the grouping. In particular, the same probability is given to partitions with 

the same configuration but having a totally different composition.

3. Centered Partition Processes

Our focus is on incorporating structured knowledge about clustering of the finite set 

of indices [N ] = {1,…,N } in the prior distribution within a Bayesian mixture model 

framework. We consider as a first source of information a given potential clustering, but our 

approach can also accommodate prior information on summary statistics such as the number 

of clusters and cluster sizes.

3.1. General Formulation

Assume that a potential clustering c0 is given and we wish to include this information in 

the prior distribution. To address this problem, we propose a general strategy to modify a 

baseline EPPF to shrink towards c0. In particular, our proposed CP process defines the prior 
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on set partitions as proportional to a baseline EPPF multiplied by a penalization term of the 

type

p c c0, ψ ∝ p0 c e−ψd c, c0 , (3.1)

with ψ > 0 a penalization parameter, d(c, c0) a suitable distance measuring how far c is from 

c0 and p0(c) indicates a baseline EPPF, that may depend on some parameters that are not of 

interest at the moment. For ψ → 0, p c c0, ψ  corresponds to the baseline EPPF p0(c), while 

for ψ ∞, p c = c0 c0, ψ 1.

Note that d(c, c0) takes a finite number of discrete values Δ = {δ0,…, δL}, with L depending 

on c0 and on the distance d( ·, ·). We can define sets of partitions having the same fixed 

distance from c0 as

sl c0 = c ∈ ΠN :d c, c0 = δl , l = 0, 1, …, L . (3.2)

Hence, for δ0 = 0, s0(c0) denotes the set of partitions equal to the base one, meaning that 

they differ from c0 only by a permutation of the cluster labels. Then s1(c0) denotes the set 

of partitions with minimum distance δ1 from c0, s2(c0) the set of partitions with the second 

minimum distance δ2 from c0 and so on. The introduced exponential term penalizes equally 

partitions in the same set sl(c0) for a given δl, but the resulting probabilities may differ 

depending on the chosen baseline EPPF.

3.2. Choices of Distance Function

The proposed CP process modifies a baseline EPPF to include a distance-based penalization 

term, which aims to shrink the prior distribution towards a prior partition guess. The 

choice of distance plays a key role in determining the behavior of the prior distribution. 

A variety of different distances and indices have been employed in clustering procedures 

and comparisons. We consider in this paper the Variation of Information (VI), obtained 

axiomatically in Meilă (2007) using information theory, and shown to nicely characterize 

neighborhoods of a given partition by Wade and Ghahramani (2018). The Variation of 

Information is based on the Shannon entropy H(·), and can be computed as

VI c, c′ = − H c − H c0 + 2H c ∧ c0

=
j = 1

K λj
N log

λj
N +

l = 1

K′ λ′
l

N log
λ′

l
N − 2

j = 1

K

l = 1

K′ λ∧
jl

N log
λ∧

jl
N ,

where log denotes log base 2, and λ∧
jl the size of blocks of the intersection c ˄ c′ and hence 

the number of indices in block j under partition c and block l under c′. Notice that VI ranges 

from 0 to log2(N ). Although normalized versions have been proposed (Vinh et al., 2010), 

some desirable properties are lost under normalization. We refer to Meilă (2007) and Wade 

and Ghahramani (2018) for additional properties and empirical evaluations.
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An alternative definition of the VI can be derived from lattice theory, exploiting the concepts 

provided in Section 2.1. We refer to Monjardet (1981) for general theory about metrics 

on lattices and ordered sets, and Rossi (2015) for a more recent review focused on set 

partitions. In general, a distance between two different partitions c, c′ ∈ ΠN can be defined 

by means of the Hasse diagram via the minimum weighted path, which corresponds to the 

shortest path length when edges are equally weighted. Instead, when edges depend on the 

entropy function through w c, c′ = H c − H c′ , the minimum weighted path between two 

partitions is the Variation of Information. Notice that two partitions are connected when in 

a covering relation, then c ˄ c′ is either equal to c or c′ and V I(c, c′) = w(c, c′). The 

minimum weight w(c, c′) corresponds to 2/N which is attained when two singleton clusters 

are merged, or conversely, a cluster consisting of two points is split (see Meilă, 2007).

3.3. Effect of the Prior Penalization

We first consider the important special case in which the baseline EPPF is p0 c = 1/ℬN and 

the CP process reduces to p c c0, ψ ∝ exp −ψd c, c0  with equation (3.1) simplifying to

p c c0, ψ = e−ψδl

u = 0
L su c0 e−ψδu

, for c ∈ sl c0 , l = 0, 1, …, L, (3.3)

where | · | indicates the cardinality and sl(c0) is defined in (3.2). Considering N = 5, there are 

52 possible set partitions; Figure 2 shows the prior probabilities assigned to partitions under 

the CP process for different values of ψ ∈ 0, 3  with ψ = 0 corresponding to the uniform 

prior. Notice that base partitions with the same configuration (e.g. for c0 = {1, 2}{3, 4, 5} 

all the partitions with blocks sizes {3, 2}), will behave in the same way, with the same 

probabilities assigned to partitions different in composition. Non-zero values of ψ increase 

the prior probability of partitions c that are relatively close to the chosen c0. However, the 

effect is not uniform but depends on the structure of both c and c0.

For example, consider the inflation that occurs in the blue region as ψ increases from 0 

to 3. When c0 has 2 blocks (Figure 2a) versus 4 (Figure 2d) there is a bigger increase. 

This is because the space of set partitions ΠN is not “uniform”, since given a fixed 

configuration there is a heterogeneous number of partitions. Expressing λ = {λ1,…, λK }as 

1f1, 2f2, …, NfN , with the notation indicating that there are fi elements of λ equal to i, the 

number of set partitions with configuration λ is

N !
Πj = 1

K λj!Πi = 1
N fi!

.

For example, for {221} = 1122304050, the number of corresponding set partitions is 15, 

while there are 10 set partitions of type {311} = 1220314050.

While the uniform distribution gives the same probability to each partition in the space, 

the EPPF induced by Gibbs-type priors distinguishes between different configurations, 

but not among partitions with the same configuration. We focus on the Dirichlet process 
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case, being the most popular process employed in applications. Under the DP, the induced 

EPPF p0 c ∝ αKΠj = 1
K Γ λj  is a function of the configuration Λ(c), which is one of {λ1,…, 

λM } since the possible configurations are finite and correspond to the number of integer 

partitions. Letting g Λ c = αKΠj = 1
K Γ λj , the formulation in (3.1) can be written as

p c c0, ψ = g λm e−ψδl

u = 0
L

υ = 1
M nuυg λυ e−ψδu

, for c ∈ slm c0 , (3.4)

where Slm c0 = c ∈ ΠN :d c, c0 = δl, Λ c = λm , the set of partitions with distance δl from 

c0 and configuration λm for l = 0, 1,…,L and m = 1,…,M, with nlm indicating the cardinality. 

The factorization (3.4) applies for the family of Gibbs-type priors in general, with different 

expressions of g(Λ(c)).

In Figure 3 we consider the prior distribution induced by the CP process when the baseline 

EPPF p0(c) comes from a Dirichlet process with concentration parameter α = 1, considering 

the same base partitions and values for ψ as in Figure 2. For the same values of the 

parameter ψ, the behavior of the CP process changes significantly due to the effect of the 

base prior. In particular, in the top left panel the CP process is centered on c0 = {1, 2, 3, 

4, 5}, the partition with only one cluster, which is a priori the most likely one for ψ = 0. 

In general, for small values of ψ the clustering process will most closely resemble that for 

a DP. As ψ increases, the DP prior probabilities decrease for partitions far from c0 while 

increase for partitions close to c0.

Finally we investigate in Figures 4–5 what happens to the prior partition probabilities of 

the CP process, when the baseline EPPF comes from a Pitman-Yor process. To allow 

comparison with the DP case, we choose the strength parameter α such that the a priori 

expected number of clusters matches the one under the DP case, log(5) ≈ 1.6. Choosing 

values of σ = (0.25, 0.75) leads to values of the strength parameter α equal to ( –0.004, 

–0.691) respectively. It can be noticed that for the smaller value of the discount parameter σ 
= 0.25 (Figure 4) the graphs resemble more the ones related to the DP process, while for σ = 

0.75 the prior probability mass concentrates more on partitions with number of clusters close 

to the expected one.

3.4. Posterior Computation Under Gibbs-Type Priors

Certain MCMC algorithms for Bayesian nonparametric mixture models can be easily 

modified for posterior computation in CP process models. In particular, we adapt the 

so-called “marginal algorithms” developed for Dirichlet and Pitman-Yor processes. These 

methods are called marginal since the mixing measure P is integrated out of the model 

and the predictive distribution is used within a MCMC sampler. In the following, we recall 

Algorithm 2 in Neal (2000) and illustrate how it can be adapted to sample from the CP 

process posterior. We refer to Neal (2000) and references therein for an overview and 

discussion of methods for both conjugate and nonconjugate cases, and to Fall and Barat 

(2014) for adaptation to Pitman-Yor processes.
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Let c be represented as an N -dimensional vector of indices {c1,…, cN } encoding cluster 

allocation and let θk be the set of parameters currently associated to cluster k. The prior 

predictive distribution for a single ci conditionally on c−i = {c1,…, ci−1, ci+1,…, cN } is 

exploited to perform the Gibbs sampling step allocating observations to either a new cluster 

or one of the existing ones. Algorithm 2 in Neal (2000) updates each ci sequentially for i = 

1,…,N via a reseating procedure, according to the conditional posterior distribution

p ci = k c−i, θ, yi ∝
p ci = k c−i p yi θk k = 1, …, K−

p ci = k c−i p yi θ dG0 θ k = K− + 1,
(3.5)

with K− the number of clusters after removing observation i. The conditional distribution 

p(ci = k|c−i) is reported in Table 2 for different choices of the prior EPPF. Notice that, for the 

case of finite Dirichlet prior, the update consists only in the first line of equation (3.5), since 

the number of classes is fixed. For Dirichlet and Pitman-Yor processes, when observation i is 

associated to a new cluster, a new value for θ is sampled from its posterior distribution based 

on the base measure G0 and the observation yi. This approach is straightforward when we 

can compute the integral p yi |θ dG0 θ , as will generally be the case when G0 is a conjugate 

prior.

Considering the proposed CP process, the conditional distribution for ci given c−i can still be 

computed, but it depends both on the base prior and the penalization term accounting for the 

distance between the base partition c0 and the one obtained by assigning the observation i to 

either one of the existing classes k ∈ 1, …, K−  or a new one. Hence, the step in equation 

(3.5) can be easily adapted by substituting the conditional distribution for p(ci = k|c−i) with

p ci = k c−i, c0, ψ ∝ p0 ci = k c−i exp −ψd c, c0 k = 1, …K−, K− + 1,

with c = c−i ∪ ci = k  the current state of the clustering and p0(ci = k|c−i) one of the 

conditional distributions in Table 2. Additional steps on the implementation using the 

variation of information as a distance are given in the Supplementary Material (Algorithm 

2).

Extension to the non-conjugate context can be similarly handled exploiting Algorithm 8 in 

Neal (2000) based on auxiliary parameters, which avoids the computation of the integral 

p yi |θ dG0 θ . The only difference is that, when ci is updated, m temporary auxiliary 

variables are introduced to represent possible values of components parameters that are not 

associated with any other observations. Such variables are simply sampled from the base 

measure G0, with the probabilities of a new cluster in Table 2 changing into (α/m)/(α + N − 

1) for the Dirichlet process and to [(α + σK−)/m]/(α + N− 1) for the Pitman-Yor process, for 

k = K− + 1,…,K− + m.
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4. Prior Calibration

As the number of observations N increases, the number of partitions explodes, and higher 

values of ψ are needed to place non-negligible prior probability in small to moderate 

neighborhoods around c0. The prior concentration around c0 depends on three main factors: 

i) N through ℬN, i.e. the cardinality of the space of set partitions, ii) the baseline EPPF p0(c) 

and iii) where c0 is located in the space. We hence propose a general method to evaluate the 

prior behavior under different settings, while suggesting how to choose the parameter ψ.

One may evaluate the prior distribution for different values of ψ and check its behavior 

using graphs such as those in Section 3.3, but they become difficult to interpret as the space 

of partitions grows. We propose to evaluate the probability distribution of the distances δ = 

d(c, c0) from the known partition c0. The probability assigned to different distances by the 

prior is

p δ = δl =
c ∈ ΠN

p c ℐ d c, c0 = δl =
c ∈ sl c0

p c l = 0, …, L,

with ℐ ⋅  the indicator function and sl(c0) denoting the set of partitions distance δl from c0, 

as defined in (3.2). Considering the uniform distribution on set partitions, then p(δ = δl) = 

|sl(c0) |/ℬN, the proportion of partitions distance δl from c0. Under the general definition of 

the CP process, the resulting distribution becomes

p δ = δl =
c ∈ sl c0

p0 c e−ψδl

u = 0
L

c∗ ∈ su c0 p0 c∗ e−ψδu
l = 0, …, L, (4.1)

with the case of Gibbs-type EPPF corresponding to

p δ = δl = m = 1
M nlmg λm e−ψδl

u = 0
L

v = 1
M nuvg λv e−ψδu

, l = 0, …, L . (4.2)

Notice that the uniform EPPF case is recovered when g(λm) = 1 for m = 1,…,M, so that 

m = 1
M nlm = nl. Hence the probability in (4.1) simplifies to

p δ = δl = nle−ψδl

u = 0
L nue−ψδu

l = 0, …, L . (4.3)

In general, since distances are naturally ordered, the corresponding cumulative distribution 

function can be simply defined as F δ = δl ≤ δ p δl  for δ ∈ δ0, …, δL  and used to assess 

how much mass is placed in different size neighborhoods around c0 under different values 

of ψ. Hence we can choose ψ to place a specified probability q (e.g. q = 0.9) on partitions 

within a specified distance δ∗ from c0. This would correspond to calibrating ψ so that F (δ∗) 
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≈ q, with F (δ∗) ≥ q. In other words, partitions generated from the prior would have at least 

probability q of being within distance δ∗ from c0.

The main problem is in computing the probabilities in equations (4.2)–(4.3), which depend 

on all the set partitions in the space. In fact, one needs to count all the partitions 

having distance δl for l = 0,…,L when the base EPPF is uniform, while taking account 

of configurations in the case of the Gibbs-type priors. Even if there are quite efficient 

algorithms to list all the possible set partitions of N (see Knuth, 2005; Nijenhuis and Wilf, 

2014), it becomes computationally infeasible due to the extremely rapid growth of the space; 

for example from N = 12 to 13, the number of set partitions grows from ℬ12 = 4, 213, 597 to 

ℬ13 = 27, 644, 437.

Given that our motivating application involves a relatively small number of birth defects, 

we propose to directly approximate the prior probabilities assigned to different distances 

from c0. We focus on obtaining estimates of distance values and related counts, which are 

the sufficient quantities to compute (4.2)–(4.3) under different values of ψ. We propose 

a strategy based on a targeted Monte Carlo procedure which augments uniform sampling 

on the space of set partitions with a deterministic local search using the Hasse diagram to 

compute counts for small values of the distance. Although the procedure is generalizable 

to higher dimensions, the computational burden grows significantly with larger numbers 

of objects to cluster. Alternative computational directions are considered further in the 

Discussion.

4.1. Deterministic Local Search

Poset theory provides a nice representation of the space of set partitions by means of the 

Hasse diagram illustrated in Section 2.1, along with suitable definition of metrics. A known 

partition c0 can be characterized in terms of number of blocks K0 and configuration Λ(c0). 

These elements allow one to locate c0 in the Hasse diagram, and hence explore connected 

partitions by means of split and merge operations on the clusters in c0.

As an illustrative example, consider the Hasse diagram of Π4 in Figure 6 and c0 = {1}{2, 3, 

4}, having 2 clusters and configuration Λ(c0) = {31}. Let N1 c0  denote the sets of partitions 

directly connected with c0, i.e. partitions covering c0 and those covered by c0. In general, 

a partition c0 with K0 clusters is covered by 
K0
2

 partitions and covers j = 1
K0 2λj − 1 − 1. In 

the example, N1 c0  contains {1, 2, 3, 4} obtained from c0 with a merge operation on the 

two clusters, and all the partitions obtained by splitting the cluster {2, 3, 4} in any possible 

way. The idea underlying the proposed local search, consists in exploiting the Hasse diagram 

representation to find all the partitions in increasing distance neighborhoods of c0. One can 

list partitions at T connections from c0 starting from N1 c0  by recursively applying split 

and merge operations on the set of partitions explored at each step. Potentially, with enough 

operations one can reach all the set partitions, since the space is finite with lower and upper 

bounds.
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In practice, the space is too huge to be explored entirely, and a truncation is needed. From 

the example in Figure 6, N1 c0  contains 3 partitions with distance 0.69 from c0 and one 

with distance 1.19. Although N2 c0  may contain partitions closer to c0 than this last, 

the definition of distance in Section 3.2 guarantees that there are no other partitions with 

distance from c0 less than 0.69. Since the VI is the minimum weighted path between two 

partitions, all the partitions reached at the second exploration step add a nonzero weight 

to distance computation. This consideration extends to an arbitrary number of explorations 

T, with δL ∗ = min d c∗, c0 c∗ ∈ NT c0  being the upper bound on the distance value. By 

discarding all partitions with distance greater that δL∗, one can compute exactly the counts 

in equations (4.2)–(4.3) related to distances δ0,…, δL∗. Notice that 2/N is the minimum 

distance between two different partitions, and 2T /N is a general lower bound on the 

distances from c0 that can be reached in T iterations.

4.2. Monte Carlo Approximation

We pair the local exploration with a Monte Carlo procedure to estimate the counts and 

distances greater that δL∗, in order to obtain a more refined representation of the prior 

distance probabilities. Sampling uniformly from the space of partitions is not in general 

a trivial problem, but a nice strategy has been proposed in Stam (1983), in which the 

probability of a partition with K clusters is used to sample partitions via an urn model. 

Derivation of the algorithm starts from the Dobiński formula (Dobiński, 1877) for the Bell 

numbers

ℬN = e−1
k = 1

∞ kN

k! , (4.4)

which from a probabilistic perspective corresponds to the N -th moment of the Poisson 

distribution with expected value equal to 1. Then a probability distribution for the number of 

clusters K ∈ 1, 2, 3, …  of a set partition can be defined as

P K = k = e−1 kN

ℬNk! , (4.5)

which is a well defined law thanks to (4.4). To simulate a uniform law over ΠN, Stam 

(1983)’s algorithm first generates the number of clusters K according to (4.5) and, 

conditionally on the sampled value, it allocates observations to the clusters according a 

discrete uniform distribution over {1,…,K}. We refer to Stam (1983) and Pitman (1997) 

(Proposition 2, Corollary 3) for derivations and proof of the validity of the algorithm.

We adapt the uniform sampling to account for the values already computed by rejecting 

all the partitions with distance less that δL∗, restricting the space to ΠN\ Nt c0 t = 0
T . 

In practice, few samples are discarded since the probability to sample one such partition 

corresponds to Nt c0 t = 0
T /ℬN, which is negligible for small values of exploration steps T 

that are generally used in the local search. A sample of partitions c(1),…, c(R), can be used 

to provide an estimate of the counts. Let R∗ de-note the number of accepted partitions and 
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ℬ∗ = ℬN − Nt c0 t = 0
T  be the number of partitions in the restricted space. Conditionally 

on the observed values of distances in the sample, δ L * + 1 , …, δL′, an estimate of the 

number of partitions with distance δ l to use in the uniform EPPF case is

nl = ℬ* 1
R* r = 1

R*
ℐ d c r , c0 = δ l , (4.6)

obtained by multiplying the proportions of partitions in the sample by the total known 

number of partitions. For the Gibbs-type EPPF case one needs also to account for the 

configurations λ1,…, λM in a given orbital of the distance; hence, the estimates are

nlm = ℬ* 1
R* r = 1

R*
ℐ d c r , c0 = δ l ℐ Λ c r = λm . (4.7)

Pairing these estimates with the counts obtained via the local search, one can evaluate 

the distributions in equations (4.2)–(4.3) for different values of ψ. The entire procedure 

is summarized in Algorithm 1 of the Supplementary Material. Although it requires a 

considerable number of steps, the procedure can be performed one single time providing 

information for different choices of ψ and EPPFs. Moreover the local search can be 

implemented in parallel to reduce computational costs.

We consider an example for N = 12 and c0 with configuration {3, 3, 3, 3}. Figure 7 shows 

the resulting cumulative probability estimates of the CP process under uniform and DP(α 
= 1) base distributions, estimated with T = 4 iterations of the local search and 20,000 

samples. Dots represent values of the cumulative probabilities, with different colors in 

correspondence to different values of the parameter ψ. Using these estimates one can assess 

how much probability is placed in different distance neighborhoods of c0; tables in Figure 

7 show the distance values defining neighborhoods around c0 with 90% prior probability. If 

one wishes to place such probability mass on partitions within distance 1 from c0, a value of 

ψ around 10 and 15 is needed, respectively, under uniform and DP base EPPF prior.

5. The National Birth Defects Prevention Study

The National Birth Defects Prevention Study (NBDPS) is a multi-state population-based, 

case-control study of birth defects in the United States (Yoon et al., 2001). Infants were 

identified using birth defects surveillance systems in recruitment areas within ten US 

states (Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North 

Carolina, Texas, and Utah), which cover roughly 10% of US births. Diagnostic case 

information was obtained from medical records and verified by a standardized clinician 

review specific to the study (Rasmussen et al., 2003). Participants in the study included 

mothers with expected dates of delivery from 1997–2009. Controls were identified from 

birth certificates or hospital records and were live-born infants without any known birth 

defects. Each state site attempted to recruit 300 cases and 100 (unmatched) controls 

annually. A telephone interview was conducted with case and control mothers to solicit 
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a wide range of demographic, lifestyle, medical, nutrition, occupational and environmental 

exposure history information.

Because birth defects are highly heterogeneous, a relatively large number of defects of 

unknown etiology are included in the NBDPS. We are particularly interested in congenital 

heart defects (CHD), the most common type of birth defect and the leading cause of 

infant death due to birth defects. Because some of these defects are relatively rare, in 

many cases we lack precision for investigating associations between potential risk factors 

and individual birth defects. For this reason, researchers typically lump embryologically 

distinct and potentially etiologically heterogeneous defects in order to increase power (e.g., 

grouping all heart defects together), even knowing the underlying mechanisms may differ 

substantially. In fact, how best to group defects is subject to uncertainty, despite a variety of 

proposed groupings available in the literature (Lin et al., 1999).

In this particular application, we consider 26 individual heart defects, which have been 

previously grouped into 6 categories by investigators (Botto et al., 2007). The prior grouping 

is shown in Table 3, along with basic summary statistics of the distribution of defects in 

the analyzed data. We are interested in evaluating the association between heart defects 

and about 90 potential risk factors related to mothers’ health status, pregnancy experience, 

lifestyle and family history. We considered a subset of data from NBDPS, excluding 

observations with missing covariates, obtaining a dataset with 8,125 controls, while all heart 

defects together comprise 4,947 cases.

5.1. Modeling Birth Defects

Standard approaches assessing the impact of exposure factors on the risk to develop a birth 

defect often rely on logistic regression analysis. Let i = 1,…,N index birth defects, while j 
= 1,…, ni indicates observations related to birth defect i, with yij = 1 if observation j has 

birth defect i and yij = 0 if observation j is a control, i.e. does not have any birth defect. Let 

Xi denote the data matrix associated to defect i, with each row xijT = xij1, …xijp  being the 

vector of the observed values of p categorical variables for the jth observation. At first one 

may consider N separate logistic regressions of the type

log pr yij = 1 xij
pr yij = 0 xij

= logit πij = αi + xijT βi, (5.1)

with αi denoting the defect-specific intercept, and βi the p × 1 vector of regression 

coefficients. However, Table 3 highlights the heterogeneity of heart defect prevalences, with 

some of them being so few as to preclude separate analyses.

A first step in introducing uncertainty about clustering of the defects may rely on a standard 

Bayesian nonparametric approach, placing a Dirichlet process prior on the distribution of 

regression coefficient vector βi in order to borrow information across multiple defects 

while letting the data inform on the number and composition of the clusters. A similar 

approach has been previously proposed in MacLehose and Dunson (2010), with the aim 

being to shrink the coefficient estimates towards multiple unknown means. In our setting, an 

informed guess on the group structure is available through c0, reported in Table 3.
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We consider a simple approach building on the Bayesian version of the model in (5.1), and 

allowing the exposure coefficients βi for i = 1,…,N to be shared across regressions, while 

accounting for c0. The model written in a hierarchical form is

yij ∼ Ber πij logit πij = αi + xijT βci, j = 1, …ni,

αi N a0, τ0
−1 βci c~Np b, Q i = 1, …N,

p c CP c0, ψ, p0 c p0 c ∝K
k = 1

K
λk − 1 !

(5.2)

where CP (c0, ψ, p0(c)) indicates the Centered Partition process, with base partition c0, 

tuning parameter ψ and baseline EPPF p0(c). We specify the baseline EPPF so that when 

ψ = 0 the prior distribution reduces to a Dirichlet Process with concentration parameter α. 

Instead, for ψ →∞ the model corresponds to K separate logistic regressions, one for each 

group composing c0. The model estimation can be performed by leveraging a Pòlya-Gamma 

data-augmentation strategy for Bayesian logistic regression (Polson et al., 2013), combined 

with the procedure illustrated in Section 3.4 for the clustering update step. The Gibbs 

sampler is detailed in the Supplementary Material (Algorithm 3), while code is available at 

https://github.com/salleuska/CPLogit.

5.2. Simulation Study

We conduct a simulation study to evaluate the performance of our approach in accurately 

estimating the impact of the covariates across regressions with common effects, under 

different prior guesses. In this section we choose a scenario mimicking the structure of our 

application. An additional simulation study under a continuous setting can be found in the 

Supplementary Material.

In simulating data we take a number of defects N = 12 equally partitioned in 4 groups and 

consider p = 10 dichotomous explanatory variables, under the assumption that defects in the 

same group have the same covariates effects. We take a different number of observations 

across defects, with {n1, n2, n3} = {100, 600, 200}, {n4, n5, n6} = {300, 100, 100}, {n7, n8, 

n9} = {500, 100, 200}, {n10, n11, n12} = {200, 200, 200}. For each defect i with i = 1,…, 12 

we generate a data matrix Xi by sampling each of the variables from a Bernoulli distribution 

with probability of success equal to 0.5. We set most of coefficients βi1,…, βi10 to 0, while 

defining a challenging scenario with small to moderate changes across different groups. In 

particular we fix {β1, β2, β3, β4} = {0.7, −1.2, 0.5, 0.5} for group 1, {β4, β5, β6} = {0.7, 

−0.7, 0.7} for group 2, {β9, β10} = {0.7, −1.2} for group 3 and {β1, β2, β9, β10} = {0.7, 

−0.7, 0.7, −0.7} for group 4. Finally, response variables yi for i = 1,…, 12 are drawn from a 

Bernoulli distribution with probability of success pi = logit Xi
Tβi .

We compare coefficients and partition estimates from a grouped logistic regression using 

a DP prior with α = 1 and using a CP prior with DP base EPPF with α = 1. In 

evaluating the CP prior performances, we consider both the true known partition and a 
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wrong guess. Posterior estimates are obtained using the Gibbs sampler described in the 

Supplementary Material. We consider a multivariate normal distribution with zero mean 

vector and covariance matrix Q = diagp(2) as base measure for the DP, while we assume 

the defect-specific intercepts αi ∼ N (0, 2) for i = 1,…, 12. We run the algorithm for 5,000 

iterations discarding the first 1,000 as burn-in, with inspection of trace-plots suggesting 

convergence of the parameters.

In evaluating the resulting estimates under different settings, we take as baseline values for 

coefficients the maximum likelihood estimates obtained under the true grouping. Figure 8 

shows the posterior similarity matrices obtained under the Dirichlet and Centered Partition 

processes, along with boxplots of the distribution of differences between the coefficients 

posterior mean estimates and their baseline values, for each of the 12 simulated defects. We 

first centered the CP prior on the true known grouping and, according to the considerations 

made in Section 4.2, we fixed the value of ψ to 15 for the CP process prior, founding 

the maximum a posteriori estimate of the partition almost recovering the true underlying 

grouping expect for merging together the third and fourth group. We also considered other 

values for ψ close to 15, and report the case for ψ = 17 in Figure 8, for which the true 

grouping is recovered, with resulting mean posterior estimates of the coefficients almost 

identical to the baseline. The Dirichlet process, although borrowing information across the 

defects, does not distinguish between all the groups but individuate only the first one, 

while the CP process recovers the true grouping, with better performances in estimating the 

coefficients.

Finally, we evaluate the CP prior performances when centered on a wrong guess c′0 of 

the base partition (Figure 9). In particular, we set c0′ = 1, 5, 9 2, 6, 10 3, 7, 11 4, 8, 12 . 

Despite having the same configuration of c0, it has distance from c0 of approximately 3.16, 

where the maximum possible distance is log2(12) = 4.70. Under such setting we estimate 

the partition c = 1, 2, 3, 5 4, 6, 7, 8, 9, 10, 11, 12  via maximum at posteriori, obtaining two 

clusters. Although we center the prior in c0′ , the estimated partition results to be closer to 

the one induced by the DP (0.65) than c0′ 2.45  (2.45), with also similar performances in 

the coefficient estimation, which may be interpreted as a suggestion that the chosen base 

partition is not supported by the data.

5.3 Application to NBDPS Data

We estimated the model in (5.2) on the NBDPS data, considering the controls as shared with 

the aim of grouping cases into informed groups on the basis of the available c0. In order to 

choose a value for the penalization parameter, we consider the prior calibration illustrated 

in Section 4, finding a value of ψ = 40 assigning a 90% probability to partitions within 

a distance around 0.8, where the maximum possible distance is equal to 4.70. In terms of 

moves on the Hasse diagram we are assigning 90% prior probability to partitions at most at 

11 split/merge operations from c0, given that the minimum distance from c0 is 2/N ≈ 0.07. 

The R code is computationally intensive, running 2 days on a Linux cluster with 512 GB 

of RAM using a single core of a Intel Xeon (R) 2.10 GHz processor. Efficiency gains are 

expected by adapting our code through including precompiled C++ code or and/or adopting 

parallelization on a computing network. However, our current prior calibration algorithm is 
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intrinsically very computational intensive in settings involving large numbers of objects to 

cluster. To assess sensitivity of the results, we performed the analysis under different values 

of ψ ∈ {0, 40, 80, 120, ∞}. In particular, for ψ = 0 the clustering behavior is governed by a 

Dirichlet process prior, while ψ →∞ corresponds to fixing the groups to c0.

In analyzing the data, we run the Gibbs sampler for 10,000 iterations and use a burn-in 

of 4,000, under the same prior settings as in Section 5.2. Figure 10 summarizes the 

posterior estimates of the allocation matrices under different values of ψ, with colored 

dots emphasizing differences with the base partition c0. Under the DP process (ψ = 0) the 

estimated partition differs substantially from the given prior clustering. Due to the immense 

space of the possible clusterings, this is likely reflective of limited information in the data, 

combined with the tendency of the DP to strongly favor certain types of partitions, typically 

characterized from few large clusters along many small ones. When increasing the value of 

the tuning parameter ψ the estimated clustering is closer to c0, with a tendency in favoring a 

total number of three clusters. In particular, for ψ = 120 one of the groups in c0 is recovered 

(left ventricular outflow), while the others are merged in two different groups. It is worth 

noticing that AVSD, which is placed in its own group under c0, is always grouped with other 

defects with a preference for ones in the septal group (blue color). Also two defects of this 

last class, ASD and ASDOS, are consistently lumped together across different values of ψ, 

and are in fact two closely related defects.

Details on the results for each of the estimated models are given in the Supplementary 

Material (Figures 3–7) and summarized here. Figure 11 shows a heatmap of the mean 

posterior log odds-ratios for increasing values of the penalization parameter ψ, with dots 

indicating significant values according to a 95% credibility interval. In general, the sign of 

the effects does not change for most of the exposure factors across the different clusterings. 

Figure 11 focuses on pharmaceutical use in the period from 1 month before the pregnancy 

and 3 months during, along with some exposures related to maternal behavior and health 

status.

We found consistent results for known risk factors for CHD in general, including diabetes 

(Correa et al., 2008) and obesity (Waller et al., 2007). The positive association between 

nausea and positive outcomes is likely due to the fact that nausea is indicative of a healthy 

pregnancy, and is consistent with prior literature (Koren et al., 2014). The association 

between the use of SSRIs and pulmonary atresia was also reported in Reefhuis et al. (2015). 

It is worth noticing that estimates obtained under the DP prior are less consistent with 

prior work. In particular, there are apparent artifacts such as the protective effect of alcohol 

consumption related to defects in the bigger cluster, which is mitigated from an informed 

borrowing across the defects. On the other side, estimates under separate models for AVSD 

or PAPVR, which corresponds to 0.02% and 0.01% of cases respectively, show how a 

separate analysis of cases with low prevalence misses even widely assessed risk factors, as 

for example diabetes.
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Discussion

There is a very rich literature on priors for clustering, with almost all of the emphasis 

on exchangeable approaches, and a smaller literature focused on including dependence on 

known features (e.g. covariates, temporal or spatial structure). The main contribution of this 

article is to propose what is seemingly a first attempt at including prior information on an 

informed guess at the clustering structure. We were particularly motivated by a concrete 

application to a birth defects study in proposing our method, based on shrinking an initial 

clustering prior towards the prior guess.

Our approach is conceptually quite general and represents a first attempt to include this 

sort of prior information in clustering. However, we recognize that the proposed prior 

calibration does not allow a straightforward scaling when the number of objects is much 

larger than the N = 26 considered in the motivating birth defects application. This is due to 

a combinatorial explosion as N increases which leads to an inevitable deterioration of our 

prior calibration algorithm. For larger N, one can consider results from the prior calibration 

approach as providing a reasonable lower bound for ψ, with several higher values also 

considered in data analyses. An immediate direction of future research considers improving 

our prior calibration algorithm, by relying on more efficient sampling methods on discrete 

combinatorial spaces, with promising directions given in the recent works of Arratia and 

DeSalvo (2016) and DeSalvo (2017).

Although our proposed CP process may in principle accommodate hyperprior distributions 

for the Dirichlet and Pitman-Yor process parameters, a limitation is in that the prior 

calibration directly depends on such parameters, making the implementation difficult when 

hyperpriors are used. For example, if a prior is put on the hyperparameters of the baseline 

EPPF, then the calibration for ψ has to be performed at each MCMC step, conditionally on 

the value of the EPPF’s hyperparameters, unless one integrates over the hyperparameters’ 

distribution. We are considering the alternative of a prior distribution on ψ, although the 

corresponding posterior leads to an intractable normalizing constant. Possible options to 

address this issue may be to consider a direct approximation for the constant as in Vitelli 

et al. (2018), or to explore specialized MCMC algorithms for doubly intractable problems 

in which the likelihood involves an intractable normalizing constant (Murray et al., 2006; 

Møller et al., 2006; Rao et al., 2016).

There are many immediate interesting directions for future research. One thread pertains to 

developing better theoretical insight and analytical tractability into the new class of priors. 

For existing approaches, such as product partition models and Gibbs-type partitions, there 

is a substantial literature providing simple forms of prediction rules and other properties. 

It is an open question whether such properties can be modified to our new class. This 

may yield additional insight into the relative roles of the base prior, centering value and 

hyperparameters in controlling the behavior of the prior and its impact on the posterior. 

Another important thread relates to applications of the proposed framework beyond the 

setting in which we have an exact guess at the complete clustering structure. In many cases, 

we may have an informed guess or initial clustering in a subset of the objects under study, 

with the remaining objects (including future ones) completely unknown. Conceptually the 
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proposed approach can be used directly in such cases, and also when one has different 

types of prior information on the clustering structure than simply which objects are clustered 

together.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Hasse diagram for the lattice of set partitions of 4 elements. A line is drawn when two 

partitions have a covering relation. For example {1} {2, 3, 4} is connected with 3 partitions 

obtained by splitting the block {2, 3, 4} in every possible way, and with partition 1, obtained 

by merging the two clusters.
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Figure 2: 
Prior probabilities of the 52 set partitions of N = 5 elements for the CP process with uniform 

base EPPF. In each graph the CP process is centered on a different partition c0 highlighted 

in blue. The cumulative probabilities across different values of the penalization parameter ψ 
are joined to form the curves, while the probability of a given partition corresponds to the 

area between the curves.
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Figure 3: 
Prior probabilities of the 52 set partitions of N = 5 elements for the CP process with 

Dirichlet process of α = 1 base EPPF. In each graph the CP process is centered on a different 

partition c0 highlighted in blue. The cumulative probabilities across different values of the 

penalization parameter ψ are joined to form the curves, while the probability of a given 

partition corresponds to the area between the curves.
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Figure 4: 
Prior probabilities of the 52 set partitions of N = 5 elements for the CP process with 

Pitman-Yor process base EPPF with σ = 0.25 and α ≈ −0.004, such that the expected 

number of clusters equal to log(5) ≈ 1.6. In each graph the CP process is centered on a 

different partition c0 highlighted in blue. The cumulative probabilities across different values 

of the penalization parameter ψ are joined to form the curves, while the probability of a 

given partition corresponds to the area between the curves.
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Figure 5: 
Prior probabilities of the 52 set partitions of N = 5 elements for the CP process with 

Pitman-Yor process base EPPF with σ = 0.75 and α ≈ −0.691, such that the expected 

number of clusters equal to log(5) ≈ 1.6. In each graph the CP process is centered on a 

different partition c0 highlighted in blue. The cumulative probabilities across different values 

of the penalization parameter ψ are joined to form the curves, while the probability of a 

given partition corresponds to the area between the curves.
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Figure 6: 
Illustration of results from the local search algorithm based on the Hasse diagram of 

Π4 starting from c0 = {1}{2,3,4}. Partitions are colored according the exploration order 

following a dark-light gradient. Notice that after 3 iterations the space is entirely explored.
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Figure 7: 
Estimate of the cumulative prior probabilities assigned to different distances from c0 for 

N = 12 and c0 with configuration {3, 3, 3, 3}, under the CP process with uniform prior 

on the left and Dirichlet Process on the right. Black dots correspond to the base prior 

with no penalization, while dots from bottom-to-top correspond to increasing values of 

ψ ∈ 5, 10, 15, 20 . Tables report the minimum distance values such that F (δ) ≥ 0.9.
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Figure 8: 
Results from grouped logistic regressions with DP(α = 1) prior and CP process prior with 

DP(α = 1) base EPPF for ψ = 15, 17, centered on the true partition. Heatmaps on the left 

side show the posterior similarity matrix. On the right side, boxplots show the distribution of 

deviations from the maximum likelihood baseline coefficients and posterior mean estimates 

for each defect i = 1,…, 12.
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Figure 9: 
Results from grouped logistic regression using CP process prior with DP(α = 1) base EPPF 

for ψ = 15 centered on partition c0′ = 1, 5, 9 2, 6, 10 3, 7, 11 4, 8, 12  which has distance 

3.16 from the true one. Heatmaps on the left side show the posterior similarity matrix. On 

the right side, boxplots show the distribution of deviations from the maximum likelihood 

baseline coefficients and posterior mean estimates for each defect i = 1,…, 12.
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Figure 10: 
Posterior allocation matrices obtained using the CP process with a DP (α = 1) prior for 

different values of ψ ∈ {0, 40, 80, 120}. On the y-axis labels are colored according base 

grouping information c0, with dots on the diagonal highlighting differences between c0 and 

the estimated partition ĉ.
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Figure 11: 
Comparison of significant odds ratio under ψ ∈ {0, 40, 80, 120, ∞} for some 

exposure factors and 4 selected heart defects in 4 different groups under c0. Dots are in 

correspondence of significant mean posterior log-odds ratios (log-OR) at 95% with red 

encoding risk factors (log-OR > 0) and green protective factors (log-OR < 0).

Invited Discussion

David B. Dahl*,§, Richard L. Warr†, Thomas P. Jensen‡

*Brigham Young University, 2152 WVB, Provo, UT 84602

†Brigham Young University, 2152 WVB, Provo, UT 84602

‡Brigham Young University, 2152 WVB, Provo, UT 84602

We enthusiastically applaud Paganin et al. (2021) for a stimulating article. The emergent 

idea of developing a partition distribution that utilizes an a priori estimate of the partition 

itself is novel and intriguing. It is very natural in the Bayesian literature to use an a priori 
estimate of a parameter when placing a prior distribution on an unknown parameter. Yet, 

Smith and Allenby (2020) and Paganin et al. (2021) have recognized the need for such prior 

distributions in the context of random partition models, which presents unique challenges 

§Corresponding author. dahl@stat.byu.edu. 

Supplementary Material

Supplementary material for Centered Partition Processes: Informative Priors for Clustering (DOI: 10.1214/20-

BA1197SUPP; .pdf).

Paganin et al. Page 34

Bayesian Anal. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because of the vast size of the discrete space of partitions. These authors add to the utility 

and applicability of random partition models and they have laid a foundation for fruitful 

future work in this area.

The Centered Partition (CP) process proposed by Paganin et al. (2021) is a distribution 

over partitions that is composed of four primary ingredients: 1) a baseline exchangeable 

partition probability function (EPPF), 2) a centering partition c0, 3) a distance function 

between partitions d(c, c0) to measure departures from c0, and 4) a penalization parameter 

ψ which controls how much influence is given to c0. The probability mass function is 

provided in Equation (3.1) of their article. Their formulation is clever in that, when ψ = 

0, the CP process reduces to the baseline EPPF. Although the default may be the Dirichlet 

process (DP) EPPF and the variation of information (VI) distance (Meilă, 2007; Wade and 

Ghahramani, 2018), Paganin et al. (2021) have developed a very general framework which 

allows for any EPPF or distance function. The resulting CP process is a non-exchangeable 

random partition distribution influenced by c0. The authors provide a compelling application 

that harnesses the power of the CP process.

In this discussion we raise a few ideas that have captured our attention as we have studied 

the CP process. First, we note that c0 is not the center of the CP process according 

to a conventional Bayesian definition and, instead, the CP process is a random partition 

distribution shrunk toward c0. Second, we suggest an alternative prior calibration algorithm 

for the penalization parameter ψ that scales beyond N = 26 which seems to be the limit in 

Paganin et al. (2021). This results in figures that reinforce the first point that c0 is not the 

center. Next, rather than fixing hyperparameters, we advocate for future research to allow 

priors to be placed on ψ and on hyperparameters of the baseline EPPF. Finally, we observe 

that a property of the VI distance may lead to problems using a Gibbs sampling scheme and 

also note the importance of congruity between c0 and the baseline EPPF. In sum, we are 

enthusiastic about the CP process and the new avenues for research which it opens.
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Table 1:

Exchangeable Partition Probability Function for Dirichlet, Pitman-Yor processes and Symmetric Dirichlet 

distribution; λj = |Bj| is the cardinality of the clusters composing the partition, while x r = x x + 1 ⋯ x + r − 1
denotes the rising factorial.

Random probability measure Parameters p(c) =

Dirichlet process (α)
αK
α N j = 1

K
λj − 1 !

Pitman-Yor process (α, σ)
j = 1
K − 1 α + jσ

α + 1 N − 1 j = 1

K
1 − σ λj − 1

Symmetric Dirichlet (κ, γ)
κ!

κ − K ! j = 1

K Γ γ/κ + λj
Γ γ/κ
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Table 2:

Conditional prior distribution for ci given c−i under different choices of the EPPF. With K− we denote the total 

number of clusters after removing the ith observation while λk
−i is the corresponding size of cluster k.

Random probability measure Parameters p ci = k |c−i ∝

Dirichlet process (α)

λk
−i

α + N − 1 k = 1, …, K−

α
α + N − 1 k = K− + 1

Pitman-Yor process (α, σ)

λk
−i − σ

α + N − 1 k = 1, …, K−

α + σK−
α + N − 1 k = K− + 1

Symmetric Dirichlet (κ, γ)
λk

−i + γ/κ
α + N − 1 k = 1, …, κ
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Table 3:

Summary statistics of the distribution of congenital heart defects among cases. Defects are divided according 

the grouping provided from investigators.

Congenital Heart Defect Abbreviation Frequency Percentage of cases

Septal

Atrial septal defect ASD 765 0.15

Perimembranous ventricular septal defect VSDPM 552 0.11

Atrial septal defect, type not specified ASDNOS 225 0.04

Muscular ventricular septal defect VSDMUSC 68 0.02

Ventricular septal defect, otherwise specified VSDOS 12 0.00

Ventricular septal defect, type not specified VSDNOS 8 0.00

Atrial septal defect, otherwise specified ASDOS 4 0.00

Conotruncal

Tetralogy of Fallot FALLOT 639 0.12

D-transposition of the great arteries DTGA 406 0.08

Truncus arteriosus COMMONTRUNCUS 61 0.01

Double outlet right ventricle DORVTGA 35 0.01

Ventricular septal defect reported as conoventricular VSDCONOV 32 0.01

D-transposition of the great arteries, other type DORVOTHER 22 0.00

Interrupted aortic arch type B IAATYPEB 13 0.00

Interrupted aortic arch, not otherwise specified IAANOS 5 0.00

Left ventricular outflow

Hypoplastic left heart syndrome HLHS 389 0.08

Coarctation of the aorta COARCT 358 0.07

Aortic stenosis AORTICSTENOSIS 224 0.04

Interrupted aortic arch type A IAATYPEA 12 0.00

Right ventricular outflow

Pulmonary valve stenosis PVS 678 0.13

Pulmonary atresia PULMATRESIA 100 0.02

Ebstein anomaly EBSTEIN 66 0.01

Tricuspid atresia TRIATRESIA 46 0.01

Anomalous pulmonary venous return

Total anomalous pulmonary venous return TAPVR 163 0.03

Partial anomalous pulmonary venous return PAPVR 21 0.01

Atrioventricular septal defect

Atrioventricular septal defect AVSD 112 0.02
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